Quantitative risk analysis for N-methyl pyrrolidone using physiologically based pharmacokinetic and benchmark dose modeling.
نویسندگان
چکیده
Establishing an occupational exposure limit (OEL) for N-methyl pyrrolidone (NMP) is important due to its widespread use as a solvent. Based on studies in rodents, the most sensitive toxic end point is a decrease in fetal/pup body weights observed after oral, dermal, and inhalation exposures of dams to NMP. Evidence indicates that the parent compound is the causative agent. To reduce the uncertainty in rat to human extrapolations, physiologically based pharmacokinetic (PBPK) models were developed to describe the pharmacokinetics of NMP in both species. Since in utero exposures are of concern, the models considered major physiological changes occurring in the dam or mother over the course of gestation. The rat PBPK model was used to determine the relationship between NMP concentrations in maternal blood and decrements in fetal/pup body weights following exposures to NMP vapor. Body weight decrements seen after vapor exposures occurred at lower NMP blood levels than those observed after oral and dermal exposures. Benchmark dose modeling was used to better define a point of departure (POD) for fetal/pup body weight changes based on dose-response information from two inhalation studies in rats. The POD and human PBPK model were then used to estimate the human equivalent concentrations (HECs) that could be used to derive an OEL value for NMP. The geometric mean of the PODs derived from the rat studies was estimated to be 350 mg h/l (expressed in terms of internal dose), a value which corresponds to an HEC of 480 ppm (occupational exposure of 8 h/day, 5 days/week). The HEC is much higher than recently developed internationally recognized OELs for NMP of 10-20 ppm, suggesting that these OELs adequately protect workers exposed to NMP vapor.
منابع مشابه
Applicable risk assessment methods in occupational and environmental exposure to nanoparticles - a narrative review
Nanoparticles (NPs) are a heterogeneous group of materials that have various applications, and their risk assessment is an essential condition. This study aimed to review the applicable risk assessment methods in occupational and environmental exposures to NPs. A literature search for articles published since 2005 in Web of Knowledge, Scopus, PubMed, Science Direct, and Google Scholar, using ap...
متن کاملSynthesis and characterization of new heat-resistance polymers based on N- (4-carboxy phenyl) trimellitimide and aromatic diamines
Five new aromatic poly(amide-imide)s (5a-e) were synthesized by direct polycondensationreaction of N-(4-carboxy phenyl) trimellitimide (3) with five aromatic diamines (4a-e) by usingtriphenyl phosphite in N-methyl-2-pyrrolidone (NMP) and pyridine at solution containingdissolved CaCl2. All of the polymers were obtained in quantitative yields with inherentviscosities between 0.29-0.40 dL/g. The r...
متن کاملPhysiologically Based Pharmacokinetic (PBPK) model for biodistribution of radiolabeled peptides in patients with neuroendocrine tumours
Objective(s): The objectives of this work was to assess the benefits of the application of Physiologically Based Pharmacokinetic (PBPK) models in patients with different neuroendocrine tumours (NET) who were treatedwith Lu-177 DOTATATE. The model utilises clinical data on biodistribution of radiolabeled peptides (RLPs) obtained by whole body scintigraphy (WBS) of the patients.Methods: The blood...
متن کاملPhysiologically Based Pharmacokinetic Modeling Framework for Quantitative Prediction of an Herb–Drug Interaction
Herb-drug interaction predictions remain challenging. Physiologically based pharmacokinetic (PBPK) modeling was used to improve prediction accuracy of potential herb-drug interactions using the semipurified milk thistle preparation, silibinin, as an exemplar herbal product. Interactions between silibinin constituents and the probe substrates warfarin (CYP2C9) and midazolam (CYP3A) were simulate...
متن کاملPhysiologically based pharmacokinetic modeling in risk assessment Development of Bayesian population methods
This thesis is based on the publications listed below, referred to in the text by their Roman numerals. The papers are reprinted with the kind permission of the publishers of the journals. Assessing the reliability of PBPK models using data from methyl chloride-exposed, non-conjugating human subjects. Physiologically based pharmacokinetic modeling of inhalation exposure of humans to dichloromet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 113 2 شماره
صفحات -
تاریخ انتشار 2010